End-to-end numerical simulations of SAXO+, a two-stage AO system for high-contrast imaging
Charles Goulas  1@  , Raphael Galicher  1@  , Fabrice Vidal  1@  , Johan Mazoyer  1@  , Florian Ferreira  1@  , Arnaud Sevin  1@  , Anthony Boccaletti  1@  , Eric Gendron  1@  , Clémentine Béchet  2@  , Michel Tallon  2@  , Maud Langlois  2@  , Laura Schreiber  3  , Caroline Kulcsar  4@  , Henri-François Raynaud  4@  , Nicolas Galland  4@  , Isaac Bernardino Dinis  5@  , François Wildi  5@  , Gaël Chauvin  6@  , Julien Milli  7@  
1 : LESIA
Observatoire de Paris-PSL, CNRS, Université Paris Cité, Sorbonne Université
2 : Centre de Recherche Astrophysique de Lyon
Université Claude Bernard - Lyon I
3 : INAF - Osservatorio Astronomico di Bologna
4 : Laboratoire Charles Fabry
Laboratoire Charles Fabry, Institut d’Optique Graduate School, CNRS, Université Paris-Saclay
5 : Dept. of Astronomy, University of Geneva
6 : Laboratoire J.L. Lagrange
CNRS : UMR7293
7 : Institut de Planétologie et d'Astrophysique de Grenoble
Université Grenoble Alpes

SAXO+ is the upgrade of SAXO, the adaptive optics system of SPHERE at the ESO's Very Large Telescope. The current system, SAXO, includes a visible Shack-Hartmann wavefront sensor. SAXO+ consists of a second stage adaptive optics downstream the SAXO stage and features a pyramid wavefront sensor. The pyramid bandwidth is near-infrared to look at fainter and redder stars.

In this work, we use end-to-end numerical simulations to evaluate the improved performance of SAXO+ compared to SAXO and optimize key system parameters. We estimate the pyramid optical gains under various seeing conditions and star magnitudes. We assess the impact of compensating non-common path aberrations with the pyramid wavefront sensor. The adaptive optics performance criterion is the starlight residual intensity in the perfect coronagraph image : the lower the better.

SAXO+ improves the performance of the system by a factor of 10 compared to SAXO, inside the second stage correction zone. A 2 λ / D modulation radius for the pyramid wavefront sensor is a safe trade-off between performance and robustness against varying turbulence conditions. Under usual observing conditions, the compensation of non-common path aberrations with the pyramid wavefront sensor does not significantly impact the SAXO+ performance. This result is consistent with the estimation of the optical gains, which are between 0.8 and 1 for standard observing conditions.



  • Poster
Online user: 1 RSS Feed | Privacy
Loading...